

**Expanding Your Solutions** 

#### **Corporate Headquarters**

13191 Crossroads Pkwy N., Ste 325 City of Industry, CA 91746 Phone: 800.775.2362

Fax: 626.330.7598 www.cemcosteel.com

# **Manufacturing Facilities**

City of Industry, CA Denver, CO Ft. Worth, TX Pittsburg, CA

# Structural Engineering/Design

1001-A Pittsburgh Antioch Hwy Pittsburg, CA 94565 Phone: 800.775.2362 Fax: 626.330.7598 www.cemcoengineering.com

# Technical Services

13191 Crossroads Pkwy N., Ste 325 City of Industry, CA 91746 Phone: 800.416.2278 Fax: 626.249.5004

# 250S125-54 C-STUDS 54 MIL. (16 GA. STRUCTURAL)

# **Geometric Properties**

250S125-54 "S" structural load-bearing studs are produced from hot-dipped galvanized steel in standard CP60 coating. CP90 is available upon special request, and may require up-charges and extended lead times.

# **Physical Properties**

| Model<br>No. |            | Design<br>Thickness<br>(in) | Minimum<br>Thickness<br>(in) | <b>Yield</b> (ksi) | Coating <sup>3,4</sup> | Web<br>Depth<br>(in) | Flange<br>Size<br>(in) | <b>Lip</b> (in) |  |
|--------------|------------|-----------------------------|------------------------------|--------------------|------------------------|----------------------|------------------------|-----------------|--|
|              | 250S125-54 | 0.0566                      | 0.0538                       | 50                 | CP60                   | 2-1/2                | 1-1/4                  | 1/4             |  |

#### Notes:

- 1. Uncoated steel thickness. Thickness is for carbon sheet steel.
- 2. Minimum thickness represents 95% of the design thickness and is the minimum acceptable thickness.
- 3. Per ASTM C955 & A1003, Table 1.
- 4. CP90 available upon request. Will require extended lead time and upcharge

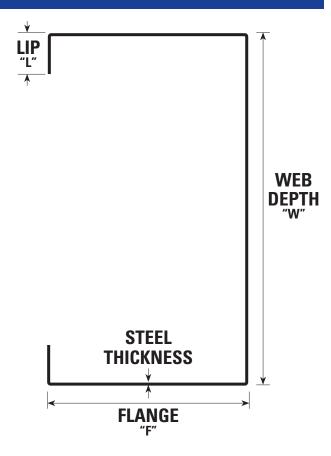
# Color Code (painted on ends): 54-mil: Green

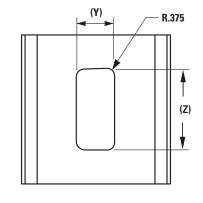
# **ASTM & Code Standards:**

- ASTM A653/A653M, A924/A924M, A1003/1003, C955 & C1007
- ATI CCRR-0224
- IBC: 2012, 2015, 2018, 2021
- CBC: 2013, 2016, 2019
- AISI: S100, S200, S240

### **LEED v4 for Building and Design Construction**

- MR Prerequisite: Construction and Demolition Waste Management Planning.
- MR Credit: Construction and Demolition Waste Management.
- MR Credit: Building Product Disclosure and Optimization Sourcing of Raw Materials, Option 2.
- MR Credit: Building Product Disclosure and Optimization Environmental Product Declarations, Options 1 & 2.
- MR Credit: Building Product Disclosure and Optimization Material Ingredients, Option 1.
- MR Credit: Building Life-Cycle Impact Reduction, Option 4.


# CEMCO cold-formed steel framing products contain 30% to 37% recycled steel.


■ Total Recycled Content: 36.9%

Post-Consumer: 19.8%

■ Pre-Consumer: 14.4%

**CSI Division:** 05.40.00 – Cold-Formed Metal Framing





#### **Hole Detail**

| Standard<br>Hole Centers<br>are 24" | <b>(Z)</b><br>(in) | <b>(Y)</b> (in) |  |  |  |
|-------------------------------------|--------------------|-----------------|--|--|--|
| 2-1/2"<br>studs                     | 2.000              | 0.750           |  |  |  |
| 3-1/2" to<br>14" studs              | 3.250              | 1.500           |  |  |  |

# 250S125-54 Section Properties

| Design             | Ev |                          | Gross <sup>3</sup> Effective Properties <sup>2</sup> Torsional |            |                          |                |                                 |             | Propertie    | operties           |               |               |                                  |                              |            |                  |            |       |      |
|--------------------|----|--------------------------|----------------------------------------------------------------|------------|--------------------------|----------------|---------------------------------|-------------|--------------|--------------------|---------------|---------------|----------------------------------|------------------------------|------------|------------------|------------|-------|------|
| Thickness<br>(in.) |    | lx<br>(in <sup>4</sup> ) | Sx<br>(in³)                                                    | Rx<br>(in) | ly<br>(in <sup>4</sup> ) | <b>Ry</b> (in) | <b>lx</b><br>(in <sup>4</sup> ) | Sx<br>(in³) | Ma<br>(in-k) | <b>Vag</b><br>(lb) | Vanet<br>(lb) | Mad<br>(in-k) | <b>Jx1000</b> (in <sup>4</sup> ) | <b>Cw</b> (in <sup>6</sup> ) | Xo<br>(in) | <b>m</b><br>(in) | Ro<br>(in) | ß     | (in) |
| 0.0566             | 50 | 0.277                    | 0.222                                                          | 0.994      | 0.049                    | 0.419          | 0.272                           | 0.220       | 4.270        | 1553               | 373           | 3.990         | 0.299                            | 0.060                        | -0.859     | 0.518            | 1.379      | 0.612 | 26.8 |

Notes: 1. Web depth for track sections equals nominal depth plus 2 times the design thickness plus bend radius. 2. The values are for members with punch-outs. 3. Gross properties are based on the full, unreduced cross-section, away from web

punchouts. **4.** Use the effective moment of inertia for deflection calculation. **5.** Allowable moment is lesser of Ma and Mad. Distortional buckling is based on an assumed  $K\varphi = 0$ . **6.** These members are available un-punched only.







06-15-22 AT