

Originally Issued: 09/01/2017

Revised: 08/29/2022

Valid Through: 09/30/2023

CALIFORNIA EXPANDED METAL PRODUCTS COMPANY 13191 Crossroads Parkway North Suite 325 City Of Industry, CA 91746 (800) 775-2362 www.cemcosteel.com

# VIPER-X COLD-FORMED STEEL FRAMING MEMBERS

**CSI Section:** 

05 40 00 Cold Formed Metal Framing 05 41 00 Structural Metal Stud Framing 05 42 00 Cold Formed Metal Joist Framing 09 21 16 Gypsum Board Assemblies 09 22 00 Supports for Plaster and Gypsum Board 09 22 16 Non-Structural Metal Stud Framing

# **1.0 RECOGNITION**

California Expanded Metal Products Company (CEMCO) Viper-X Cold-Formed Steel Framing Members described in this report were evaluated for use in cold-formed steel lightframe construction. The dimensional and structural properties of the Viper-X Cold-Formed Steel Framing Members were evaluated for compliance to the following codes:

- 2018, 2015 and 2012 International Building Code<sup>®</sup> (IBC)
- 2018, 2015 and 2012 International Residential Code<sup>®</sup> (IRC)
- 2019 California Building Code (CBC) attached supplement
- 2019 California Residential Code (CRC)— attached supplement
- 2020 City of Los Angeles Building Code (LABC) attached supplement
- 2020 City of Los Angeles Residential Code (LARC) attached supplement

# 2.0 LIMITATIONS

Use of the Viper-X framing members recognized in this report is subject to the following limitations:

**2.1** The Viper-X framing members shall be installed and identified in accordance with this report, codes listed in Section 1.0 of this report, and the manufacturer's instructions. Where conflicts occur, the more restrictive shall govern.

**2.2** Plans, calculations, and specifications verifying compliance with this report shall be submitted to the building official for approval. The documents shall be prepared and sealed by a registered design professional where required by

the statutes of the jurisdiction in which the project is to be constructed.

**2.3** Minimum uncoated base steel thickness of the framing members delivered to the jobsite shall be 95 percent of the design thickness shown in <u>Tables 1</u> and <u>2</u> of this report.

**2.4** Framing members with G40 galvanized coating are limited under the IBC to use as non-load bearing interior wall framing with maximum transverse load of 10 psf (480 Pa).

## 3.0 PRODUCT USE

**3.1 General:** CEMCO Viper-X Framing members (studs and tracks) are used for interior non-load bearing non-composite and composite wall framing and ceiling framing in compliance with IBC Sections 2210 and 2211 and Chapter 25. The framing members are also alternatives to framing complying with the IRC where an engineered design is performed in accordance with IRC Section R301.1.3.

# 3.2 Design:

**3.2.1** Framing members shall be designed in accordance with AISI S220. Allowable moments in <u>Tables 1</u> and <u>2</u> of this report are for framing members with the compression flange continuously braced at a spacing less than, or equal to, the tabulated value of  $L_u$  for the member. The allowable moment shall be determined in accordance with AISI S100 if the spacing of compression flange bracing exceeds  $L_u$ . Flexural member design shall include all applicable failure modes in accordance with AISI S100 including flexure, deflection, shear, web crippling, combined bending and web crippling, and combined bending and shear.

**3.2.2** Allowable web crippling capacities for concentrated loads and reactions are shown in <u>Table 3</u> of this report. Figure  $\underline{4}$  of this report provides associated web crippling load and support condition definitions.

**3.3 Installation:** Steel framing installation shall be in accordance with ASTM C754, the approved construction documents, the codes listed in Section 1.0 of this report, AISI S220, as applicable, and this report. Where differences occur between these documents, the more restrictive shall govern.

**3.4 Fire-Resistance Rated Assemblies:** Viper-X framing members may be used in fire-resistance rated construction where permitted by Section 721 of the IBC, including generic (not labeled proprietary) ratings in GA 600, and the approved construction documents.

# 4.0 PRODUCT DESCRIPTION

**4.1 Product Information:** Viper-X framing members described in this report are limited to those section designations in <u>Tables 1</u> and <u>2</u> of this report and associated <u>Figures 1</u> and <u>2</u> of this report. Viper-X studs are roll-formed\_\_\_\_\_



The product described in this Uniform Evaluation Service (UES) Report has been evaluated as an alternative material, design or method of construction in order to satisfy and comply with the intent of the provision of the code, as noted in this report, and for at least equivalence to that prescribed in the code in quality, strength, effectiveness, fire resistance, durability and safety, as applicable, in accordance with IBC Section 104.11. This document shall only be reproduced in its entirety.

Copyright © 2022 by International Association of Plumbing and Mechanical Officials. All rights reserved. Printed in the United States. Ph: 1-877-4IESRPT • Fax: 909.472.4171 web: www.uniform-es.org • 4755 East Philadelphia Street, Ontario, California 91761-2816 – USA



Revised: 08/29/2022

Valid Through: 09/30/2023

in a "C" shape with an offset (planking) in the web and knurling on the flanges. Viper-X tracks are channel-shaped with offset (planking) in the web.

Stud shapes are manufactured with or without web punchouts. Punch-outs, when provided, are centered on the web and spaced at 24 inches (610 mm) on center with maximum sizes noted in <u>Figure 3</u> of this report. The minimum distance from each end of the stud to the nearest edge of the punch-out is 10 inches (254 mm). Stud properties listed in this report are for members with punch outs unless otherwise noted. Track properties listed in this report are for members without punch-outs.

## 4.2 Material Information:

**4.2.1 Steel:** Framing members are provided with a minimum G40 coating. Steel used for the manufacture of CEMCO Viper-X framing members is as follows:

**4.2.1.1** The Viper-X 15 mil, 18 mil, 22 mil (and 28 mil) studs and tracks are cold formed from steel coils with a minimum yield strength ( $F_y$ ) of 57 ksi (393 MPa) and a minimum tensile strength ( $F_u$ ) of 65 ksi (448 MPa). The studs and tracks are cold-formed from steel complying with ASTM A 1003 Type NS and coating conforming to ASTM A653\_Grade 33 steel coils with a minimum yield strength ( $F_y$ ) of 33 ksi (227 MPa) and a minimum tensile strength ( $F_u$ ) of 45 ksi (310 MPa).

**4.2.2 Fasteners:** Screws attaching the gypsum board to the studs in composite wall assemblies shall be No. 6, Type S, fine thread, bugle head drywall screws conforming to ASTM C1002.

# **5.0 IDENTIFICATION**

Viper-X framing members are stamped, stenciled or embossed at a maximum of 96 inches (2438 mm) on center with the manufacturer's name, the section designation, the minimum uncoated steel thickness, the minimum specified yield strength if over 33 ksi (230 Mpa), the metallic coating designation if over G40, and the evaluation report number (ER-524). The identification includes the IAPMO Uniform Evaluation Service Mark of Conformity. Either Mark of Conformity may be used as shown below:



**IAPMO UES ER-524** 

# 6.0 SUBSTANTIATING DATA

Calculations in accordance with the ICC-ES Acceptance Criteria for Cold Formed Steel Framing Members (AC46) dated October 2019.

### 7.0 STATEMENT OF RECOGNITION

This evaluation report describes the results of research carried out by IAPMO Uniform Evaluation Service on California Expanded Metal Products Company Viper-X Cold-Formed Steel Framing Members to assess conformance to the codes shown in Section 1.0 of this report and serves as documentation of the product certification.

For additional information about this evaluation report please visit www.uniform-es.org or email us at info@uniform-es.org



Originally Issued: 09/01/2017

Revised: 08/29/2022

Valid Through: 09/30/2023



| WEB LENGTH |
|------------|
| (inch)     |
| 1 5/8      |
| 2 1/2      |
| 3 1/2      |
| 3 5/8      |
| 4          |
| 6          |



**FIGURE 1- VIPER-X STUD** 



# Originally Issued: 09/01/2017

Revised: 08/29/2022

Valid Through: 09/30/2023



| WEB LENGTH |
|------------|
| (Inch)     |
| 1 5/8      |
| 2 1/2      |
| 3 1/2      |
| 3 5/8      |
| 4          |
| 6          |



**FIGURE 2- VIPER-X TRACK** 



Originally Issued: 09/01/2017

UES

®

Valid Through: 09/30/2023





# **FIGURE 3- PUNCH-OUT CONFIGURATION**

Revised: 08/29/2022



Originally Issued: 09/01/2017

Revised: 08/29/2022

Valid Through: 09/30/2023

FIGURE 4- WEB CRIPPLING CONDITIONS





### Notes:

- 1. Condition 1 End Reaction One Flange Loading
- 2. Condition 2 Interior Reaction One Flange Loading
- 3 Condition 3 End Reaction Two Flange Loading
- 4. Condition 4 Interior Reaction Two Flange Loading

# Number: 524



Originally Issued: 09/01/2017

Revised: 08/29/2022

Valid Through: 09/30/2023

TABLE 1

## SECTION AND STRUCTURAL PROPERTIES OF CEMCO VIPER-X (VXS) STUDS

|                           |        |           |              | Gross Properties |        |        |       |        |       |        | Effect              | ive Prop           | erties             |       |                       | Critical   |                |       |       |            |
|---------------------------|--------|-----------|--------------|------------------|--------|--------|-------|--------|-------|--------|---------------------|--------------------|--------------------|-------|-----------------------|------------|----------------|-------|-------|------------|
| Maria                     | Yield  | Web       | Design       | M                | A.r    |        |       |        |       |        | c                   |                    |                    | .,    | L ( 10 <sup>-6)</sup> | c          | v              |       |       | Unbraced   |
| viper-x                   | Stress | Height, h | Thickness, t | weight           | Area   | •x     | ĸ     | y .    | ĸy    | xe     | J <sub>xe</sub>     | IVI <sub>a-l</sub> | IVI <sub>a-d</sub> | Vag   | J (X 10 ·             | <b>~</b> w | X <sub>o</sub> | ĸ     | β     | Length, Lu |
| Member                    | (ksi)  | (in.)     | (in.)        | (ID./ft.)        | (in.⁻) | (in.") | (in.) | (in.*) | (in.) | (in.") | (in. <sup>3</sup> ) | (k-in.)            | (k-in.)            | (k)   | (in. )                | (in.°)     | (in.)          | (in.) |       | (in)       |
| 162VXS144-15              | 57     | 1.625     | 0.0155       | 0.271            | 0.080  | 0.038  | 0.687 | 0.024  | 0.545 | 0.033  | 0.026               | 0.857              | 0.964              | 0.099 | 6.379                 | 0.018      | -1.332         | 1.595 | 0.303 | 28.8       |
| 250VXS144-15              | 57     | 2.500     | 0.0155       | 0.317            | 0.093  | 0.099  | 1.030 | 0.027  | 0.538 | 0.088  | 0.050               | 1.499              | 1.572              | 0.405 | 7.471                 | 0.040      | -1.167         | 1.647 | 0.498 | 27.72      |
| 350VXS144-151             | 57     | 3.500     | 0.0155       | 0.370            | 0.109  | 0.213  | 1.400 | 0.029  | 0.524 | 0.193  | 0.076               | 2.265              | 2.210              | 0.389 | 8.710                 | 0.078      | -1.033         | 1.817 | 0.677 | 27.12      |
| 362VXS144-151             | 57     | 3.625     | 0.0155       | 0.376            | 0.111  | 0.231  | 1.445 | 0.030  | 0.522 | 0.210  | 0.079               | 2.371              | 2.296              | 0.395 | 8.860                 | 0.084      | -1.019         | 1.843 | 0.694 | 27.12      |
| 400VXS144-151             | 57     | 4.000     | 0.0155       | 0.396            | 0.116  | 0.290  | 1.578 | 0.031  | 0.515 | 0.263  | 0.088               | 2.704              | 2.552              | 0.411 | 9.331                 | 0.104      | -0.979         | 1.927 | 0.742 | 26.88      |
| 600VXS144-15 <sup>2</sup> | 57     | 6.000     | 0.0155       | 0.501            | 0.147  | 0.753  | 2.260 | 0.035  | 0.482 | -      | -                   | -                  | -                  | -     | 11.810                | 0.250      | -0.815         | 2.450 | 0.889 | 26.16      |
| 162VXS144-18              | 57     | 1.625     | 0.0188       | 0.327            | 0.096  | 0.045  | 0.686 | 0.028  | 0.543 | 0.041  | 0.036               | 1.186              | 1.263              | 0.145 | 11.347                | 0.022      | -1.328         | 1.590 | 0.302 | 28.8       |
| 250VXS144-18              | 57     | 2.500     | 0.0188       | 0.383            | 0.113  | 0.119  | 1.029 | 0.032  | 0.537 | 0.110  | 0.067               | 2.071              | 2.060              | 0.498 | 13.280                | 0.047      | -1.163         | 1.643 | 0.499 | 27.6       |
| 350VXS144-18              | 57     | 3.500     | 0.0188       | 0.447            | 0.132  | 0.257  | 1.398 | 0.036  | 0.522 | 0.241  | 0.100               | 3.115              | 2.906              | 0.487 | 15.501                | 0.094      | -1.029         | 1.813 | 0.678 | 27.12      |
| 362VXS144-18              | 57     | 3.625     | 0.0188       | 0.455            | 0.134  | 0.279  | 1.443 | 0.036  | 0.520 | 0.262  | 0.105               | 3.271              | 3.020              | 0.496 | 15.780                | 0.101      | -1.015         | 1.839 | 0.695 | 27.00      |
| 400VXS144-181             | 57     | 4.000     | 0.0188       | 0.479            | 0.141  | 0.350  | 1.576 | 0.037  | 0.514 | 0.329  | 0.118               | 3.738              | 3.359              | 0.519 | 16.611                | 0.125      | -0.975         | 1.923 | 0.743 | 26.88      |
| 600VXS144-18 <sup>2</sup> | 57     | 6.000     | 0.0188       | 0.607            | 0.179  | 0.910  | 2.258 | 0.041  | 0.480 | -      | -                   | -                  | -                  | -     | 21.042                | 0.301      | -0.812         | 2.447 | 0.890 | 26.04      |
| 162VXS144-22              | 57     | 1.625     | 0.0235       | 0.407            | 0.120  | 0.056  | 0.684 | 0.035  | 0.541 | 0.045  | 0.045               | 1.563              | 1.569              | 0.151 | 22.060                | 0.026      | -1.322         | 1.584 | 0.303 | 28.80      |
| 250VXS144-22              | 57     | 2.500     | 0.0235       | 0.477            | 0.140  | 0.148  | 1.027 | 0.040  | 0.534 | 0.142  | 0.089               | 2.994              | 2.806              | 0.615 | 25.850                | 0.058      | -1.158         | 1.637 | 0.500 | 27.60      |
| 350VXS144-22              | 57     | 3.500     | 0.0235       | 0.557            | 0.164  | 0.319  | 1.396 | 0.044  | 0.520 | 0.309  | 0.135               | 4.466              | 3.976              | 0.634 | 30.170                | 0.116      | -1.024         | 1.807 | 0.679 | 27.00      |
| 362VXS144-22              | 57     | 3.625     | 0.0235       | 0.567            | 0.167  | 0.346  | 1.440 | 0.045  | 0.518 | 0.336  | 0.141               | 4.680              | 4.135              | 0.649 | 30.710                | 0.124      | -1.009         | 1.834 | 0.697 | 26.88      |
| 400VXS144-22              | 57     | 4.000     | 0.0235       | 0.597            | 0.176  | 0.435  | 1.574 | 0.046  | 0.512 | 0.423  | 0.159               | 5.355              | 4.611              | 0.686 | 32.341                | 0.153      | -0.970         | 1.918 | 0.744 | 26.76      |
| 600VXS144-221             | 57     | 6.000     | 0.0235       | 0.757            | 0.223  | 1.132  | 2.255 | 0.051  | 0.478 | 1.097  | 0.261               | 7.605              | 6.887              | 0.662 | 40.991                | 0.371      | -0.807         | 2.442 | 0.891 | 25.92      |
| 162VXS144-28              | 57     | 1.625     | 0.0295       | 0.509            | 0.150  | 0.069  | 0.681 | 0.043  | 0.538 | 0.067  | 0.064               | 2.481              | 2.316              | 0.210 | 43.390                | 0.032      | -1.315         | 1.576 | 0.304 | 28.8       |
| 250VXS144-28              | 57     | 2.500     | 0.0295       | 0.596            | 0.175  | 0.184  | 1.024 | 0.050  | 0.532 | 0.178  | 0.115               | 4.343              | 3.839              | 0.736 | 50.870                | 0.071      | -1.151         | 1.629 | 0.501 | 27.48      |
| 350VXS144-28              | 57     | 3.500     | 0.0295       | 0.697            | 0.205  | 0.397  | 1.393 | 0.055  | 0.517 | 0.391  | 0.175               | 6.361              | 5.453              | 0.838 | 59.430                | 0.142      | -1.017         | 1.800 | 0.681 | 26.88      |
| 362VXS144-28              | 57     | 3.625     | 0.0295       | 0.709            | 0.209  | 0.431  | 1.438 | 0.055  | 0.515 | 0.424  | 0.183               | 6.655              | 5.680              | 0.861 | 60.500                | 0.153      | -1.003         | 1.827 | 0.699 | 26.88      |
| 400VXS144-28              | 57     | 4.000     | 0.0295       | 0.747            | 0.220  | 0.542  | 1.570 | 0.057  | 0.509 | 0.535  | 0.207               | 7.572              | 6.339              | 0.919 | 63.710                | 0.189      | -0.963         | 1.911 | 0.746 | 26.64      |
| 600VXS144-28              | 57     | 6.000     | 0.0295       | 0.947            | 0.279  | 1.412  | 2.251 | 0.063  | 0.475 | 1.400  | 0.344               | 10.693             | 9.551              | 1.054 | 80.830                | 0.457      | -0.801         | 2.436 | 0.892 | 25.8       |
| 162VXS144-30              | 33     | 1.625     | 0.0312       | 0.536            | 0.158  | 0.073  | 0.680 | 0.046  | 0.537 | 0.073  | 0.080               | 1.856              | 1.703              | 0.542 | 51.160                | 0.034      | -1.316         | 1.576 | 0.303 | 38.04      |
| 250VXS144-30              | 33     | 2.500     | 0.0312       | 0.630            | 0.185  | 0.194  | 1.023 | 0.052  | 0.531 | 0.194  | 0.140               | 3.240              | 2.850              | 0.869 | 60.110                | 0.075      | -1.149         | 1.627 | 0.501 | 36.24      |
| 350VXS144-30              | 33     | 3.500     | 0.0312       | 0.736            | 0.216  | 0.419  | 1.392 | 0.058  | 0.516 | 0.419  | 0.212               | 4.729              | 4.092              | 1.187 | 70.230                | 0.150      | -1.015         | 1.798 | 0.681 | 35.28      |
| 362VXS144-30              | 33     | 3.625     | 0.0312       | 0.749            | 0.220  | 0.455  | 1.437 | 0.058  | 0.514 | 0.454  | 0.223               | 4.986              | 4.292              | 1.188 | 71.500                | 0.161      | -1.001         | 1.825 | 0.699 | 35.28      |
| 400VXS144-30              | 33     | 4.000     | 0.0312       | 0.789            | 0.232  | 0.572  | 1.570 | 0.060  | 0.508 | 0.572  | 0.254               | 5.653              | 4.802              | 1.187 | 75.290                | 0.199      | -0.961         | 1.909 | 0.747 | 35.04      |
| 600VXS144-30              | 33     | 6.000     | 0.0312       | 1.001            | 0.294  | 1.491  | 2.250 | 0.066  | 0.474 | 1.491  | 0.425               | 8.110              | 7.402              | 0.914 | 95.540                | 0.481      | -0.799         | 2.434 | 0.892 | 33.96      |
| 162VXS144-33              | 33     | 1.625     | 0.0346       | 0.593            | 0.175  | 0.081  | 0.679 | 0.050  | 0.536 | 0.080  | 0.091               | 2.177              | 1.934              | 0.584 | 69.652                | 0.037      | -1.309         | 1.569 | 0.304 | 38.28      |
| 250VXS144-33              | 33     | 2.500     | 0.0346       | 0.696            | 0.205  | 0.214  | 1.022 | 0.057  | 0.529 | 0.214  | 0.157               | 3.802              | 3.253              | 0.959 | 81.740                | 0.082      | -1.145         | 1.623 | 0.502 | 36.24      |
| 350VXS144-33              | 33     | 3.500     | 0.0346       | 0.814            | 0.239  | 0.463  | 1.390 | 0.063  | 0.514 | 0.463  | 0.238               | 5.541              | 4.718              | 1.387 | 95.540                | 0.164      | -1.011         | 1.794 | 0.682 | 35.28      |
| 362VXS144-33              | 33     | 3.625     | 0.0346       | 0.828            | 0.243  | 0.501  | 1.434 | 0.064  | 0.512 | 0.502  | 0.250               | 5.774              | 4.903              | 1.413 | 97.270                | 0.176      | -0.997         | 1.821 | 0.700 | 35.28      |
| 400VXS144-33              | 33     | 4.000     | 0.0346       | 0.873            | 0.257  | 0.631  | 1.568 | 0.066  | 0.506 | 0.631  | 0.286               | 6.568              | 5.521              | 1.414 | 102.450               | 0.218      | -0.957         | 1.905 | 0.748 | 35.04      |
| 600VXS144-33              | 33     | 6.000     | 0.0346       | 1.108            | 0.326  | 1.647  | 2.248 | 0.073  | 0.473 | 1.647  | 0.486               | 9.459              | 8.549              | 1.153 | 130.060               | 0.528      | -0.796         | 2.431 | 0.893 | 33.84      |



Originally Issued: 09/01/2017

Revised: 08/29/2022

Valid Through: 09/30/2023

| Table Notes        |                        |                  |                        |              |                   |                |               |            |            |           |           |            |            |           |            |            |           |
|--------------------|------------------------|------------------|------------------------|--------------|-------------------|----------------|---------------|------------|------------|-----------|-----------|------------|------------|-----------|------------|------------|-----------|
| 1. Web height to   | thicknes               | s ratio (h/t) es | xceeds 200. Web        | stiffeners r | equired at all su | ipport points  | and conce     | entrated   | loads.     |           |           |            |            |           |            |            |           |
| 2. Members havi    | ng a web               | height to thic   | kness ratio (h/t)      | value excee  | eding 260 will n  | ot have effec  | tive prope    | rties list | ed, only   | gross pr  | operties  | will be li | sted.      |           |            |            |           |
| 3.Web height va    | lue (h) us             | sed for h/t calc | ulation is the flat    | t width of t | he web. For (S)   | members, th    | is is the o   | ut to out  | t member   | size, m   | nus twi   | ce the thi | ckness, r  | ninus twi | ice the in | side ben   | d radius. |
| 4. Members havi    | ng a flan              | ge width to the  | ickness ratio (b/t     | ) value exce | eeding 60 must    | be considered  | for use v     | with the   | limitatior | 1s descri | bed in A  | AISI S100  | )-12 secti | ion B1.   |            |            |           |
| 5.Flange width v   | alue (b)               | used for b/t ca  | lculation is the fl    | at width of  | the flange. For   | (S) members    | s, this is th | e out to   | out men    | nber size | , minus   | twice the  | thicknes   | ss, minus | twice th   | e inside l | bend rad  |
|                    |                        |                  |                        |              |                   |                |               |            |            |           |           |            |            |           |            |            |           |
|                    |                        |                  |                        |              |                   |                |               |            |            |           |           |            |            |           |            |            |           |
|                    |                        |                  |                        |              |                   |                |               |            |            |           |           |            |            |           |            |            |           |
| General Notes      | 5                      |                  |                        |              |                   |                |               |            |            |           |           |            |            |           |            |            |           |
| 1. The yield stren | ngth, F <sub>y</sub> , | is 57 ksi for 1  | 5 mil, 18 mil, 22      | mil & 28 n   | nil steel         |                |               |            |            |           |           |            |            |           |            |            |           |
| and 33 ksi for     | r 30 & 33              | 3 mil steel.     |                        |              |                   |                |               |            |            |           |           |            |            |           |            |            |           |
|                    |                        |                  |                        |              |                   |                |               |            |            |           |           |            |            |           |            |            |           |
| 2. Tabulated gro   | ss proper              | ties are based   | on full, unreduc       | ed section a | away from pune    | chouts.        |               |            |            |           |           |            |            |           |            |            |           |
|                    |                        |                  |                        |              |                   |                |               |            |            |           |           |            |            |           |            |            |           |
| 3 Punch-out size   | es are 0.7             | '5" x 2 00" for  | stud denths 1.62       | 5" and 2 50  | " and 1 50" x 2   | 75"            |               |            |            |           |           |            |            |           |            |            |           |
| for stud depth     | s 3 50" a              | nd deeper        | blud depuis 1102       |              | , und noo nii     |                |               |            |            |           |           |            |            |           |            |            |           |
| for stud deput     | 55.50 u                | nu uceper.       |                        |              |                   |                |               |            |            |           |           |            |            |           |            | -          |           |
| 4. Factory punch   | outs are               | in accordance    | with section C5        | of AISI S2   | 01-12. The dista  | ance from the  | center of     | the last   | punchou    | t to the  | end of th | ne stud is | 12 inche   | s.        |            |            |           |
|                    |                        |                  |                        |              |                   |                |               |            |            |           |           |            |            |           |            |            |           |
| 5. For Allowable   | e Stress E             | Design (ASD) 1   | method, factors o      | of safety of | 1.67 and 1.6      |                |               |            |            |           |           |            |            |           |            |            |           |
| respectively, a    | re used f              | for moment an    | d shear capacitie      | s as per AI  | SI S100-2016      |                |               |            |            |           |           |            |            |           |            |            |           |
| ( D                |                        | 2/011 6 11       | . 1.                   |              |                   |                |               |            |            |           |           |            |            |           |            |            |           |
| 6. Design stiffen  | ing lip is             | 3/8" for all stu | las.                   |              |                   |                |               |            |            |           |           |            |            |           |            |            |           |
|                    |                        |                  |                        |              |                   |                |               |            |            |           |           |            |            |           |            |            |           |
|                    |                        |                  |                        |              |                   |                |               |            |            |           |           |            |            |           |            |            |           |
| Notations          |                        |                  |                        |              |                   |                |               |            |            |           |           |            |            |           |            |            |           |
| I,                 |                        |                  | Moment of Inertia      | about the X  | K axis of Gross S | Section        |               |            |            |           |           |            |            |           |            |            |           |
| I,                 | , -                    |                  | Moment of Inertia      | about the Y  | axis of Gross S   | Section        |               |            |            |           |           |            |            |           |            |            |           |
| R <sub>x</sub> , R | , -                    |                  | Radius of Gyratio      | n about the  | X and Y axes, re  | espectively of | Gross Sec     | tion       |            |           |           | _          |            |           |            |            |           |
|                    | J -                    |                  | St. Venant Torsio      | n Constant   |                   |                |               |            |            |           |           |            |            |           |            |            |           |
| C <sub>v</sub>     | v -                    |                  | Torsional Warping      | Constant     |                   |                |               |            |            |           |           |            |            |           |            |            |           |
| X                  | 0                      |                  | Distance from She      | ear Center t | o Centroid Along  | the X-Axis     |               |            |            |           |           |            |            |           |            |            |           |
| R                  | -                      |                  | Polar Radius of G      | yration abo  | ut the Shear Cer  | nter           |               |            |            |           |           |            |            |           |            |            |           |
| 4                  | - 6                    |                  | Torsional-Flexural     | Constant     | t Dunch out chou  | at the Viewie  |               |            |            |           |           |            |            |           |            |            |           |
| Ixe                |                        |                  | (for deflection color) | UTITIETUA at | I FUNCT-OUL ADOL  | IL LINE A AXIS |               |            |            |           |           |            |            |           |            |            |           |
| c                  |                        |                  | Effective Section      | Modulus abr  | out the X axis at | Punch-out      |               |            |            |           |           |            |            |           |            |            |           |
| M                  |                        |                  | Allowable Momen        | t hased on l | Local Buckling    | i unor-out     |               |            |            |           |           |            |            |           |            |            |           |
| M                  |                        |                  | Allowable Momen        | t hased on I | Distortional Buck | lina           |               |            |            |           |           |            |            |           |            |            |           |
|                    | -                      |                  | Allowable Shear a      | t Gross Se   | ction             |                |               |            |            |           |           |            |            |           |            |            |           |
| Vaç                | - 10                   |                  | Allowable offeat a     | 1 01055 00   | 0001              |                |               |            |            |           |           |            |            |           |            |            |           |



Originally Issued: 09/01/2017

Revised: 08/29/2022

TABLE 2

Valid Through: 09/30/2023

|                                 |                | SECTION AND STRUCTURAL PROPERTIES OF CEMCO BLUE MOON VIPER X (VXT) TRACKS |                     |                |                                       |                          |                         |              |                                       |                         |                                        |                           |                           |                        |                                                |                          |                         |                         |       |
|---------------------------------|----------------|---------------------------------------------------------------------------|---------------------|----------------|---------------------------------------|--------------------------|-------------------------|--------------|---------------------------------------|-------------------------|----------------------------------------|---------------------------|---------------------------|------------------------|------------------------------------------------|--------------------------|-------------------------|-------------------------|-------|
|                                 |                |                                                                           |                     |                |                                       |                          |                         |              |                                       |                         |                                        |                           |                           |                        |                                                |                          |                         |                         |       |
|                                 |                |                                                                           |                     |                |                                       | Gross Pr                 | operties                |              |                                       |                         | E                                      | ffective                  | Propertie                 | 5                      |                                                |                          |                         |                         |       |
| Member                          | Yield<br>(ksi) | Design<br>Thickn<br>ess<br>(in.)                                          | Weight<br>(Ib./ft.) | Area<br>(in.²) | ا <sub>x</sub><br>(in. <sup>4</sup> ) | S <sub>x</sub><br>(in.³) | R <sub>x</sub><br>(in.) | Sγ<br>(in.³) | ι <sub>y</sub><br>(in. <sup>4</sup> ) | R <sub>y</sub><br>(in.) | l <sub>xe</sub><br>(in. <sup>4</sup> ) | S <sub>xe</sub><br>(in.³) | M <sub>a</sub><br>(k-in.) | V <sub>ag</sub><br>(k) | J ( x 10 <sup>-6)</sup><br>(in. <sup>4</sup> ) | C <sub>w</sub><br>(in.⁵) | x <sub>o</sub><br>(in.) | R <sub>o</sub><br>(in.) | β     |
| 162VXT125-15                    | 57             | 0.0155                                                                    | 0.217               | 0.064          | 0.031                                 | 0.038                    | 0.699                   | 0.027        | 0.011                                 | 0.406                   | 0.015                                  | 0.013                     | 0.359                     | 0.484                  | 5.118                                          | 0.005                    | -0.858                  | 1.179                   | 0.471 |
| 250VXT125-15                    | 57             | 0.0155                                                                    | 0.263               | 0.077          | 0.081                                 | 0.064                    | 1.022                   | 0.035        | 0.012                                 | 0.390                   | 0.041                                  | 0.024                     | 0.680                     | 0.558                  | 6.204                                          | 0.014                    | -0.731                  | 1.315                   | 0.691 |
| 350VXT125-151                   | 57             | 0.0155                                                                    | 0.316               | 0.093          | 0.174                                 | 0.099                    | 1.369                   | 0.045        | 0.013                                 | 0.370                   | 0.089                                  | 0.037                     | 1.042                     | 0.457                  | 7.450                                          | 0.030                    | -0.632                  | 1.552                   | 0.834 |
| 362VXT125-151                   | 57             | 0.0155                                                                    | 0.323               | 0.095          | 0.189                                 | 0.104                    | 1.411                   | 0.046        | 0.013                                 | 0.368                   | 0.096                                  | 0.038                     | 1.088                     | 0.450                  | 7.600                                          | 0.032                    | -0.622                  | 1.585                   | 0.846 |
| 400VXT125-15 <sup>2</sup>       | 57             | 0.0155                                                                    | 0.342               | 0.101          | 0.238                                 | 0.118                    | 1.536                   | 0.049        | 0.013                                 | 0.361                   | -                                      | -                         | -                         | -                      | 8.070                                          | 0.041                    | -0.593                  | 1.686                   | 0.876 |
| 600VXT125-15 <sup>2</sup>       | 57             | 0.0155                                                                    | 0.448               | 0.132          | 0.628                                 | 0.208                    | 2.183                   | 0.065        | 0.014                                 | 0.328                   | -                                      | -                         | -                         | -                      | 10.550                                         | 0.102                    | -0.480                  | 2.259                   | 0.955 |
| 162VXT125-18                    | 57             | 0.0188                                                                    | 0.263               | 0.077          | 0.038                                 | 0.046                    | 0.701                   | 0.033        | 0.013                                 | 0.405                   | 0.020                                  | 0.017                     | 0.489                     | 0.819                  | 9.129                                          | 0.006                    | -0.856                  | 1.178                   | 0.472 |
| 250VXT125-18                    | 57             | 0.0188                                                                    | 0.319               | 0.094          | 0.098                                 | 0.078                    | 1.023                   | 0.043        | 0.014                                 | 0.389                   | 0.055                                  | 0.033                     | 0.945                     | 0.779                  | 11.067                                         | 0.017                    | -0.729                  | 1.315                   | 0.692 |
| 350VXT125-18                    | 57             | 0.0188                                                                    | 0.383               | 0.113          | 0.211                                 | 0.120                    | 1.369                   | 0.054        | 0.015                                 | 0.369                   | 0.119                                  | 0.051                     | 1.458                     | 0.630                  | 13.280                                         | 0.036                    | -0.631                  | 1.552                   | 0.835 |
| 362VXT125-18                    | 57             | 0.0188                                                                    | 0.39129             | 0.115          | 0.229                                 | 0.125                    | 1.412                   | 0.055        | 0.016                                 | 0.367                   | 0.129                                  | 0.053                     | 1.522                     | 0.443                  | 13.560                                         | 0.039                    | -0.621                  | 1.585                   | 0.847 |
| 400VXT125-181                   | 57             | 0.0188                                                                    | 0.415               | 0.122          | 0.289                                 | 0.143                    | 1.537                   | 0.059        | 0.016                                 | 0.360                   | 0.162                                  | 0.060                     | 1.718                     | 0.413                  | 14.390                                         | 0.049                    | -0.592                  | 1.686                   | 0.877 |
| 600VXT125-18 <sup>2</sup>       | 57             | 0.0188                                                                    | 0.543               | 0.160          | 0.761                                 | 0.253                    | 2.183                   | 0.078        | 0.017                                 | 0.327                   | -                                      | -                         | -                         | -                      | 18.820                                         | 0.123                    | -0.479                  | 2.259                   | 0.955 |
| 162VXT125-22                    | 57             | 0.0235                                                                    | 0.329               | 0.097          | 0.048                                 | 0.057                    | 0.702                   | 0.040        | 0.016                                 | 0.404                   | 0.027                                  | 0.025                     | 0.703                     | 0.728                  | 17.819                                         | 0.008                    | -0.853                  | 1.177                   | 0.474 |
| 250VXT125-22                    | 57             | 0.0235                                                                    | 0.399               | 0.117          | 0.123                                 | 0.097                    | 1.024                   | 0.053        | 0.018                                 | 0.388                   | 0.076                                  | 0.048                     | 1.358                     | 1.092                  | 21.600                                         | 0.021                    | -0.727                  | 1.314                   | 0.694 |
| 350VXT125-22                    | 57             | 0.0235                                                                    | 0.479               | 0.141          | 0.265                                 | 0.149                    | 1.370                   | 0.066        | 0.019                                 | 0.368                   | 0.167                                  | 0.075                     | 2.138                     | 0.955                  | 25.930                                         | 0.045                    | -0.629                  | 1.552                   | 0.836 |
| 362VXT125-22                    | 57             | 0.0235                                                                    | 0.490               | 0.144          | 0.287                                 | 0.157                    | 1.413                   | 0.068        | 0.019                                 | 0.366                   | 0.181                                  | 0.078                     | 2.235                     | 0.931                  | 26.470                                         | 0.049                    | -0.619                  | 1.585                   | 0.848 |
| 400VXT125-22                    | 57             | 0.0235                                                                    | 0.519               | 0.153          | 0.361                                 | 0.179                    | 1.538                   | 0.073        | 0.020                                 | 0.359                   | 0.227                                  | 0.089                     | 2.528                     | 0.871                  | 28.090                                         | 0.061                    | -0.590                  | 1.686                   | 0.877 |
| 600VXT125-221                   | 57             | 0.0235                                                                    | 0.679               | 0.200          | 0.952                                 | 0.315                    | 2.184                   | 0.096        | 0.021                                 | 0.326                   | 0.569                                  | 0.144                     | 4.103                     | 0.660                  | 36.750                                         | 0.153                    | -0.477                  | 2.259                   | 0.955 |
| 162VXT125-28                    | 57             | 0.0295                                                                    | 0.413               | 0.121          | 0.060                                 | 0.072                    | 0.704                   | 0.050        | 0.020                                 | 0.403                   | 0.038                                  | 0.036                     | 1.019                     | 0.908                  | 35.223                                         | 0.010                    | -0.850                  | 1.175                   | 0.477 |
| 250VXT125-28                    | 57             | 0.0295                                                                    | 0.501               | 0.147          | 0.155                                 | 0.121                    | 1.026                   | 0.066        | 0.022                                 | 0.387                   | 0.104                                  | 0.067                     | 1.915                     | 1.460                  | 42.710                                         | 0.026                    | -0.724                  | 1.314                   | 0.696 |
| 350VXT125-28                    | 57             | 0.0295                                                                    | 0.601               | 0.177          | 0.333                                 | 0.187                    | 1.372                   | 0.082        | 0.024                                 | 0.367                   | 0.233                                  | 0.110                     | 3.130                     | 1.536                  | 51.270                                         | 0.056                    | -0.626                  | 1.552                   | 0.837 |
| 362VXT125-28                    | 57             | 0.0295                                                                    | 0.613               | 0.180          | 0.361                                 | 0.196                    | 1.414                   | 0.084        | 0.024                                 | 0.365                   | 0.253                                  | 0.115                     | 3.277                     | 1.489                  | 52.340                                         | 0.061                    | -0.616                  | 1.585                   | 0.849 |
| 400VXT125-28                    | 57             | 0.0295                                                                    | 0.651               | 0.191          | 0.454                                 | 0.224                    | 1.539                   | 0.090        | 0.025                                 | 0.358                   | 0.317                                  | 0.130                     | 3.719                     | 1.371                  | 55.550                                         | 0.076                    | -0.588                  | 1.686                   | 0.878 |
| 600VXT125-28*                   | 57             | 0.0295                                                                    | 0.852               | 0.250          | 1.196                                 | 0.395                    | 2.185                   | 0.118        | 0.027                                 | 0.325                   | 0.805                                  | 0.214                     | 6.098                     | 1.049                  | 72.660                                         | 0.191                    | -0.475                  | 2.260                   | 0.956 |
| 162VXT125-30                    | 33             | 0.0312                                                                    | 0.426               | 0.125          | 0.058                                 | 0.071                    | 0.681                   | 0.051        | 0.020                                 | 0.404                   | 0.058                                  | 0.071                     | 1.180                     | 0.000                  | 40.156                                         | 0.009                    | -0.863                  | 1.171                   | 0.457 |
| 250VXT125-30                    | 33             | 0.0312                                                                    | 0.518               | 0.152          | 0.154                                 | 0.123                    | 1.003                   | 0.067        | 0.023                                 | 0.388                   | 0.154                                  | 0.123                     | 2.026                     | 0.855                  | 48.850                                         | 0.026                    | -0.733                  | 1.302                   | 0.683 |
| 350VXT125-30                    | 33             | 0.0312                                                                    | 0.624               | 0.183          | 0.335                                 | 0.191                    | 1.351                   | 0.085        | 0.025                                 | 0.368                   | 0.335                                  | 0.191                     | 3.155                     | 1.166                  | 58.780                                         | 0.057                    | -0.632                  | 1.536                   | 0.830 |
| 362VX1125-30                    | 33             | 0.0312                                                                    | 0.637               | 0.187          | 0.363                                 | 0.201                    | 1.595                   | 0.087        | 0.025                                 | 0.366                   | 0.363                                  | 0.201                     | 3.308                     | 1.100                  | 60.020                                         | 0.051                    | -0.622                  | 1.569                   | 0.845 |
| 400VX1125-30<br>600VXT125-30    | 33             | 0.0312                                                                    | 0.887               | 0.199          | 1 223                                 | 0.229                    | 2 165                   | 0.095        | 0.028                                 | 0.339                   | 1.010                                  | 0.229                     | 5.557                     | 0.803                  | 83,601                                         | 0.077                    | -0.595                  | 2 2/1                   | 0.8/4 |
| 162V/YT125-33                   | 33             | 0.0312                                                                    | 0.007               | 0.201          | 0.071                                 | 0.408                    | 0.706                   | 0.123        | 0.028                                 | 0.320                   | 0.054                                  | 0.05/                     | 1.070                     | 0.653                  | 56 705                                         | 0.150                    | -0.475                  | 1 1 7/                  | 0.334 |
| 250VXT125-33                    | 33             | 0.0346                                                                    | 0.587               | 0.142          | 0.071                                 | 0.004                    | 1 027                   | 0.038        | 0.025                                 | 0.402                   | 0.034                                  | 0.098                     | 1.070                     | 0.014                  | 68,880                                         | 0.011                    | -0.722                  | 1.313                   | 0.479 |
| 350VXT125-33                    | 33             | 0.0346                                                                    | 0.704               | 0.207          | 0.391                                 | 0.219                    | 1.373                   | 0.095        | 0.028                                 | 0.366                   | 0.316                                  | 0.159                     | 3.146                     | 1.413                  | 82.680                                         | 0.066                    | -0.624                  | 1.552                   | 0.838 |
| 362VXT125-33                    | 33             | 0.0346                                                                    | 0 719               | 0.212          | 0 424                                 | 0 230                    | 1 415                   | 0.097        | 0.028                                 | 0.364                   | 0.344                                  | 0.209                     | 3 314                     | 1 413                  | 84 410                                         | 0.071                    | -0.614                  | 1 585                   | 0.850 |
| 400VXT125-33                    | 33             | 0.0346                                                                    | 0.763               | 0.225          | 0.533                                 | 0.262                    | 1.540                   | 0.104        | 0.029                                 | 0.357                   | 0.436                                  | 0.194                     | 3.207                     | 1.413                  | 89.590                                         | 0.089                    | -0.586                  | 1.686                   | 0.879 |
| 600VXT125-33                    | 33             | 0.0346                                                                    | 0.999               | 0.294          | 1.403                                 | 0.463                    | 2.186                   | 0.137        | 0.031                                 | 0.324                   | 1.141                                  | 0.335                     | 5.525                     | 1.142                  | 117.200                                        | 0.224                    | -0.474                  | 2.260                   | 0.956 |
| <sup>1</sup> Web height-to-thic | kness ratio    | exceeds 20                                                                | 0. Web Stif         | femers ar      | e required a                          | at all suppo             | rt points ar            | nd concentr  | ated loads                            |                         |                                        |                           |                           |                        |                                                |                          |                         |                         |       |
| <sup>2</sup> Webheight-to-thick | ness ratio     | exceeds 26                                                                | 0. Section is       | snot in con    | npliance wi                           | th AISI S100             | ) section B             | l, so effect | ive propert                           | ,<br>ies are not        | provided.                              | ĺ                         |                           |                        |                                                |                          |                         |                         |       |

#### Table Notes

1. Section properties are in accordance with AISI S100-12.

2. Web depth for track sections is equal to the nominal height plus 2 times the design thickness plus the bend radius.

3. For deflection calculations, use the effective moment of inertia.



Originally Issued: 09/01/2017

Revised: 08/29/2022

Valid Through: 09/30/2023

| <b>TABLE 3-Allowable</b> | Web | Crippling                              | Loads |
|--------------------------|-----|----------------------------------------|-------|
|                          |     | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |       |

|                                      |                         |             |                |              |               |             |                   | Allov      | vable Web   | Crippling L | .oads        |           |              |              |                   |            |            |     |  |
|--------------------------------------|-------------------------|-------------|----------------|--------------|---------------|-------------|-------------------|------------|-------------|-------------|--------------|-----------|--------------|--------------|-------------------|------------|------------|-----|--|
|                                      |                         |             |                |              | . (= . = )    |             |                   |            | 0 (115)     |             |              |           |              |              |                   |            |            |     |  |
|                                      |                         |             |                | Conditio     | n 1 (E1F)     |             | Condition 2 (LEF) |            |             |             |              | Conditio  | n 3 (E2F)    |              | Condition 4 (12F) |            |            |     |  |
|                                      |                         | -           |                | Bearing Le   | ength (in)    |             |                   | Bearing L  | ength (in)  |             |              | Bearing L | ength (in)   |              |                   | Bearing Le | ength (in) |     |  |
| Stud Designation                     | Design Thickness        | Fy<br>(ksi) | 1              | 3.5          | 4             | 6           | 1                 | 3.5        | 4           | 6           | 1            | 3.5       | 4            | 6            | 1                 | 3.5        | 4          | 6   |  |
| 162VXS15                             | 0.0155                  | 57          | 73             | 119          | 125           | 149         | 117               | 171        | 179         | 207         | 74           | 111       | 116          | 135          | 159               | 210        | 217        | 243 |  |
| 162VXS18                             | 0.0188                  | 57          | 105            | 165          | 181           | 215         | 175               | 253        | 265         | 304         | 139          | 117       | 122          | 139          | 225               | 297        | 308        | 345 |  |
| 162VXS22                             | 0.0235                  | 57          | 160            | 257          | 272           | 322         | 279               | 394        | 412         | 471         | 135          | 186       | 194          | 220          | 358               | 465        | 481        | 536 |  |
| 162VXS28                             | 0.0295                  | 57          | 244            | 388          | 409           | 483         | 442               | 615        | 641         | 730         | 218          | 297       | 308          | 349          | 573               | 731        | 754        | 836 |  |
| 162VXS30                             | 0.0312                  | 33          | 157            | 248          | 262           | 308         | 286               | 397        | 413         | 470         | 142          | 192       | 200          | 225          | 372               | 473        | 488        | 540 |  |
| 162VXS33                             | 0.0346                  | 33          | 190            | 299          | 315           | 370         | 352               | 485        | 504         | 572         | 176          | 237       | 246          | 277          | 459               | 580        | 598        | 660 |  |
| 250VXS15                             | 0.0155                  | 5/          | 68             | 112          | 119           | 141         | 114               | 166        | 1/4         | 201         | 41           | 59        | 62           | /1           | 132               | 1/8        | 184        | 208 |  |
| 250VXS18                             | 0.0188                  | 57          | 99             | 161          | 1/1           | 203         | 272               | 247        | 258         | 297         | 6/           | 94        | 98           | 112          | 202               | 267        | 2//        | 310 |  |
| 250VXS22                             | 0.0235                  | 5/          | 152            | 244          | 258           | 306         | 272               | 385        | 402         | 461         | 113          | 156       | 162          | 185          | 520               | 425        | 439        | 490 |  |
| 250VX528                             | 0.0295                  | 22          | 234            | 3/1          | 391           | 401         | 433               | 200        | 028         | /15         | 100          | 250       | 200          | 301          | 529               | 429        | 452        | F01 |  |
| 250VA350                             | 0.0312                  | 22          | 192            | 257          | 201           | 295         | 201               | 175        | 403         | 561         | 125          | 209       | 216          | 242          | 120               | 430<br>540 | 452        | 614 |  |
| 250VX555                             | 0.0155                  | 57          | 64             | 105          | 111           | 132         | 111               | 162        | 169         | 196         | 30           | 43        | 45           | 243          | 116               | 156        | 162        | 183 |  |
| 350VXS -18                           | 0.0135                  | 57          | 94             | 152          | 161           | 191         | 167               | 240        | 251         | 289         | 52           | 73        | 76           | 87           | 181               | 130        | 242        | 272 |  |
| 350VXS -22                           | 0.0235                  | 57          | 145            | 233          | 246           | 291         | 266               | 377        | 393         | 451         | 91           | 128       | 133          | 152          | 298               | 388        | 401        | 447 |  |
| 350VXS -28                           | 0.0295                  | 57          | 224            | 355          | 374           | 442         | 425               | 591        | 616         | 701         | 161          | 219       | 227          | 257          | 490               | 626        | 646        | 716 |  |
| 350VXS -30                           | 0.0312                  | 33          | 144            | 228          | 240           | 283         | 276               | 382        | 398         | 452         | 106          | 144       | 150          | 169          | 320               | 401        | 420        | 465 |  |
| 350VXS -33                           | 0.0346                  | 33          | 175            | 275          | 290           | 342         | 340               | 467        | 486         | 552         | 135          | 182       | 188          | 212          | 399               | 504        | 520        | 573 |  |
| 362VXS15                             | 0.0155                  | 57          | 63             | 104          | 110           | 131         | 110               | 161        | 169         | 195         | 49           | 41        | 43           | 49           | 115               | 154        | 160        | 180 |  |
| 362VXS18                             | 0.0188                  | 57          | 93             | 151          | 160           | 190         | 167               | 240        | 251         | 289         | 50           | 71        | 74           | 84           | 179               | 237        | 245        | 275 |  |
| 362VXS22                             | 0.0235                  | 57          | 144            | 231          | 244           | 289         | 266               | 376        | 392         | 449         | 90           | 125       | 130          | 148          | 295               | 383        | 396        | 442 |  |
| 362VXS28                             | 0.0295                  | 57          | 223            | 353          | 372           | 439         | 424               | 590        | 614         | 700         | 158          | 215       | 223          | 252          | 485               | 620        | 640        | 709 |  |
| 362VXS30                             | 0.0312                  | 33          | 144            | 227          | 239           | 282         | 275               | 381        | 396         | 451         | 105          | 141       | 147          | 166          | 317               | 403        | 416        | 461 |  |
| 362VXS33                             | 0.0346                  | 33          | 175            | 274          | 289           | 340         | 339               | 466        | 485         | 551         | 133          | 179       | 185          | 209          | 396               | 500        | 515        | 569 |  |
| 400VXS15                             | 0.0155                  | 57          | 62             | 102          | 108           | 128         | 109               | 160        | 167         | 193         | 24           | 35        | 36           | 42           | 109               | 146        | 152        | 171 |  |
| 400VXS18                             | 0.0188                  | 57          | 91             | 148          | 157           | 186         | 165               | 238        | 249         | 286         | 45           | 64        | 66           | 76           | 172               | 227        | 236        | 264 |  |
| 400VXS22                             | 0.0235                  | 57          | 141            | 227          | 240           | 284         | 2364              | 373        | 390         | 446         | 83           | 116       | 121          | 137          | 286               | 371        | 384        | 428 |  |
| 400VXS28                             | 0.0295                  | 57          | 219            | 348          | 367           | 433         | 421               | 586        | 610         | 695         | 149          | 202       | 210          | 238          | 472               | 603        | 623        | 690 |  |
| 400VXS30                             | 0.0312                  | 33          | 141            | 224          | 236           | 2/8         | 2/3               | 3/9        | 394         | 449         | 99           | 134       | 139          | 157          | 309               | 393        | 405        | 449 |  |
| 400VXS33                             | 0.0346                  | 33          | 1/2            | 2/1          | 285           | 334         | 337               | 464        | 482         | 547         | 127          | 1/0       | 1/6          | 199          | 387               | 488        | 503        | 555 |  |
| 600VXS15                             | 0.0155                  | 57          | 22             | 125          | 142           | 115         | 105               | 153        | 220         | 275         | 22           | 22        | 22           | 20           | 140               | 114        | 118        | 215 |  |
| 600VX518                             | 0.0100                  | 57          | 120            | 200          | 221           | 261         | 255               | 229        | 259         | /2/5        | 52           | 52        | 76           | 20           | 240               | 21/        | 225        | 215 |  |
| 600VX522                             | 0.0255                  | 57          | 204            | 209          | 2/2           | 402         | 200               | 569        | 502         | 674         | 107          | 1/6       | 151          | 171          | /12               | 526        | 542        | 601 |  |
| 600VXS -30                           | 0.0312                  | 33          | 132            | 209          | 220           | 259         | 265               | 368        | 383         | 435         | 72           | 98        | 102          | 115          | 271               | 345        | 356        | 393 |  |
| 600VXS -33                           | 0.0346                  | 33          | 161            | 253          | 267           | 315         | 328               | 450        | 469         | 532         | 96           | 129       | 134          | 151          | 343               | 432        | 446        | 492 |  |
| <sup>1</sup> Bearing length to web   | height ratio. N/h exc   | eeds NASE   | PEC limit of 2 | ,            |               |             |                   |            |             |             |              |           |              |              |                   |            |            |     |  |
| <sup>2</sup> Bearing length to thick | kness ratio N/t excee   | ds NASPE(   | limit of 210   | )            |               |             |                   |            |             |             |              |           |              |              |                   |            |            |     |  |
| <sup>1,2</sup> Rearing length to we  | h height ratio N/h ex   |             | PEC limit of   | 2 and Rea    | ring longth t | o thickness | ratio N/t         | evceeds N  | ASPEC limit | of 210      |              |           |              |              |                   |            |            |     |  |
| *Punchout reductions of              | only needed when x <    | Xmax        |                | 2 and Deal   | ing rengeri   | o theknes.  | , 14(10), 14/ (   | CACCCUS IV | -or ee mine | 01 210.     |              |           |              |              |                   |            |            |     |  |
| T anenou reductions e                |                         | , All an    |                |              |               |             |                   |            |             |             |              |           |              |              |                   |            |            |     |  |
|                                      |                         |             |                |              |               |             |                   |            |             |             |              |           |              |              |                   |            |            |     |  |
| Table Notes                          |                         |             |                |              |               |             |                   |            |             |             |              |           |              |              |                   |            |            |     |  |
| 1. Listed allowable load             | ds are based on mem     | bers faster | ned to suppo   | rts.         |               |             |                   |            |             |             |              |           |              |              |                   |            |            |     |  |
| 2. tabulated web crippl              | ing capacities are for  | single mer  | mbers only.    |              |               |             |                   |            |             |             |              |           |              |              |                   |            |            |     |  |
| 3. Listed allowable load             | ds are for unpunched    | webs. Cap   | acity reduct   | ions for en  | d and interi  | or one-flar | nge loading       | (condition | 1 and 2) ne | ar punchou  | uts may be o | alculated | oer AISI S10 | 0 specificat | ion section       | n C3.4.2.  |            |     |  |
| 4. Listed allowable load             | ds apply only to stud r | members v   | vith stiffene  | d or partial | ly stiffened  | flanges.    |                   |            |             |             |              |           |              |              |                   |            |            |     |  |
| 5. h refers to the flat di           | imension of the web.    |             |                |              |               |             |                   |            |             |             |              |           |              |              |                   |            |            |     |  |
|                                      |                         |             |                |              |               |             |                   |            |             |             |              |           |              |              |                   |            |            |     |  |



Originally Issued: 09/01/2017

EVALUATION REPORT

Revised: 08/29/2022

Valid Through: 09/30/2023

# **CALIFORNIA SUPPLEMENT**

# CALIFORNIA EXPANDED METAL PRODUCTS

COMPANY 13191 Crossroads Parkway North Suite 325 City Of Industry, CA 91746 (800) 775-2362 www.cemcosteel.com

# VIPER-X COLD-FORMED STEEL FRAMING MEMBERS

**CSI Section:** 

05 40 00 Cold Formed Metal Framing 05 41 00 Structural Metal Stud Framing 05 42 00 Cold Formed Metal Joist Framing 09 21 16 Gypsum Board Assemblies 09 22 00 Supports for Plaster and Gypsum Board 09 22 16 Non-Structural Metal Stud Framing

# **1.0 RECOGNITION**

California Expanded Metal Products Company (CEMCO) Viper-X Cold-Formed Steel Framing Members evaluated in IAPMO UES ER-524 complies with the following codes, subject to the additional requirements in Sections 2.0 and 3.0 of this supplement:

- 2019 California Building Code (CBC)
- 2019 California Residential Code (CRC)

# 2.0 LIMITATIONS

Use of the Viper-X framing members recognized in this report is subject to the following conditions:

**2.1** The Viper-X framing members shall be installed and identified in accordance with this report, codes listed in Section 1.0 of this report, and the manufacturer's instructions. Where conflicts occur, the more restrictive shall govern.

**2.2** Plans, calculations, and specifications verifying compliance with this report shall be submitted to the building official for approval. The documents shall be prepared and sealed by a registered design professional where required by the statutes of the jurisdiction in which the project is to be constructed.

**2.3** Minimum uncoated base steel thickness of the framing members delivered to the jobsite shall be 95 percent of the design thickness shown in <u>Tables 1</u> and <u>2</u> of this report.

**2.4** Framing members with G40 galvanized coating are limited under the CBC to use as non-load bearing interior wall framing with maximum transverse load of 10 psf (480 Pa).

**2.5** This supplement expires concurrently with ER-524.

## 3.0 PRODUCT USE

**3.1 General:** CEMCO Viper-X Framing members (studs and tracks) are used for interior non-load bearing non-composite and composite wall framing and ceiling framing in compliance with CBC Sections 2210 and 2211 and Chapter 25. The framing members are also alternatives to framing complying with the CRC where an engineered design is performed in accordance with CRC Section R301.1.3.

**3.2** Construction regulated by DSA SS and OSHPD shall comply with Chapter 22A and Sections 2210A and 2211A of the CBC.

**3.3** In accordance with CBC Section 2211A.7, prescriptive framing is not permitted construction regulated by DSA SS and OSHPD.



Originally Issued: 09/01/2017

Revised: 08/29/2022

Valid Through: 09/30/2023

# CITY OF LOS ANGELES SUPPLEMENT

## CALIFORNIA EXPANDED METAL PRODUCTS COMPANY 13191 Crossroads Parkway North Suite 325 City Of Industry, CA 91746 (800) 775-2362 www.cemcosteel.com

# VIPER-X COLD-FORMED STEEL FRAMING MEMBERS

# **CSI Section:**

05 40 00 Cold Formed Metal Framing 05 41 00 Structural Metal Stud Framing 05 42 00 Cold Formed Metal Joist Framing 09 21 16 Gypsum Board Assemblies 09 22 00 Supports for Plaster and Gypsum Board 09 22 16 Non-Structural Metal Stud Framing

# **1.0 RECOGNITION**

California Expanded Metal Products Company (CEMCO) Viper-X Cold-Formed Steel Framing Members evaluated in IAPMO UES ER-524 complies with the following codes, subject to the additional requirements in Sections 2.0 and 3.0 of this supplement:

- 2020 City of Los Angeles Building Code (LABC)
- 2020 City of Los Angeles Residential Code (LARC)

# 2.0 LIMITATIONS

Use of the Viper-X framing members recognized in this report supplement is subject to the following limitations:

**2.1** The Viper-X framing members shall be installed and identified in accordance with this report, codes listed in Section 1.0 of this report, and the manufacturer's instructions. Where conflicts occur, the more restrictive shall govern.

**2.2** Prior to installation, calculations and details demonstrating compliance with this approval report and the 2020 LABC or 2020 LARC shall be submitted to the structural plan check section for review and approval. The calculations and details shall be prepared by a registered engineer, licensed in the State of California.

**2.3** The design and installation of the Viper-X framing members shall be in accordance with LABC Chapters 16, 17, and 22 as applicable.

**2.4** Minimum uncoated base steel thickness of the framing members delivered to the jobsite shall be 95 percent of the design thickness shown in <u>Tables 1</u> and <u>2</u> of this report.

**2.5** Framing members with G40 galvanized coating are limited under the LABC to use as non-load bearing interior wall framing with maximum transverse load of 10 psf (480 Pa).

2.6 This supplement expires concurrently with ER-524.

## **3.0 PRODUCT USE**

**3.1 General:** CEMCO Viper-X Framing members (studs and tracks) are used for interior non-load bearing non-composite and composite wall framing and ceiling framing in compliance with LABC Sections 2210 and 2211 and Chapter 25. The framing members are also alternatives to framing complying with the LARC where an engineered design is performed in accordance with LARC Section R301.1.3.